Computer Simulation Based Study of Photovoltaic Cells/Modules and their Experimental Verification

نویسندگان

  • R. K. Nema
  • Savita Nema
  • Gayatri Agnihotri
چکیده

A computer simulation based study of photovolatics cells/ modules using circuit simulator PSpice is presented in this paper. The PSpice is an analogoue/digital circuit simulator which calculates voltage and current in a circuit under variety of different circumstances. This feature of PSpice is used to simulate a circuit based model for PV cells/ modules and then to conduct behavioral study under varying conditions of solar insolation including shading effect, temperature, diode model parameters, series and shunt resistance etc. The study is very helpful in clearly outlining the principles and the intricacies of PV cells/modules and may surely be used to verify impact of different topologies and control techniques on the performance of different types of PV system. To put the simulation study on firm footing an experimental verification is also carried out in the Lab by developing a PC based data acquisition system, which is also briefly discussed here as subsidiary.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control Simulation and Experimental Verification of Maximum Power Point Tracking Based on RT-LAB (TECHNICAL NOTE)

The maximum power point tracking (MPPT) control in the Photovoltaic system is the key control technology, however present controller has the disadvantages of long development cycle, high cost and complex verification, and there are some disadvantages carrying out totally physical simulation or totally digital simulation of different control algorithms. This paper carried out design of hardware ...

متن کامل

Comprehensive Simulation for Two-diode Model of Photovoltaic Cells in SimPowerSystems Using Explicit Mathematical Functions

In this paper, using Thevenin’s theorem and also nonlinear Lambert W function, a novel two-diode model of photovoltaic cells is presented in mathematical explicit manner. In comparison with existing explicit models in the literature which are valid exclusively for n2=n1 and n2=2n1, this model includes a wide range of silicon-based cells with arbitrary diodes ideality factors. Acquiring regulati...

متن کامل

The New Modeling for MPPT Control of Photovoltaic Cellules

Consideration of the Current-voltage (I-V) characteristics variations of solar modules with temperature and irradiations variations is basic for maximum power point tracking (MPPT). Having a simple and accurate mathematical model for the optimize utilization of the solar modules is essential. In this paper, a novel modeling of photovoltaic systems with novel coefficients is proposed for mathema...

متن کامل

The New Modeling for MPPT Control of Photovoltaic Cellules

Consideration of the Current-voltage (I-V) characteristics variations of solar modules with temperature and irradiations variations is basic for maximum power point tracking (MPPT). Having a simple and accurate mathematical model for the optimize utilization of the solar modules is essential. In this paper, a novel modeling of photovoltaic systems with novel coefficients is proposed for mathema...

متن کامل

An Investigation of Temperature Effects on Solar Photovoltaic Cells and Modules

The solar photovoltaic (PV) systems are facing serious problems due to unavoidable losses in their system, leads to more devation of output power from the input power level. This effect is known as a mismatch effect and is available in PV systems. Many losses are encountered in PV system and it is difficult to minimize such losses. In this paper, the influence of thermal effect on the solar PV ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009